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Constituent scale and property effects on 
fibre-matrix debonding and pull-out 
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An improved formulation for the pull-out problem is presented, that accounts for mechanical 
equilibrium at the embedded fibre end, and frictional interfacial forces in the debonded 
portion/The externally applied stress required to cause catastrophic pull-out is determined as a 
function of various parameters including the ratio of interracial shear strength to the interfacial 
frictional stress. The effects of fibril bundles on stress transfer and initiation of debonding is 
also investigated and results are compared with those for single fibres. A comparison is made 
between the stress needed to cause intermediate non-catastrophic debonding with that 
needed for catastrophic debonding and subsequent pull-out. Some new results are presented 
which explain phenomenon from earlier experimental investigations, and which show the 
importance of the constituent scaling on the micromechanisms of damage under 
consideration. 

1. In t roduct ion  
Unlike polycrystalline solids which Show a specified 
mode of fracture, a composite is subject to diverse 
micromechanisms of damage, any one of which may 
by itself, or in conjunction with others, cause the 
ultimate failure of the material. Some of these mech- 
anisms contribute to the toughness of the fibrous 
composite and, if we are to fully utilize the properties 
of these advanced materials it is essential that we not 
only understand the mechanics of each mechanism of 
damage, but also the effect of constituent scaling and 
interaction on the macro-response of the material. 
Fracture toughness of composites is a result of various 
toughening mechanisms such as fibre-matrix debond- 
ing and subsequent pull-out. Under monotonic load- 
ing on a composite small cracks form in the matrix 
normal to the direction of loading. This is specially 
seen in unidirectional composites loaded in the direc- 
tion of the fibrous reinforcement. This causes the 
transfer of load to the fibres with increasing shear 
stress, eventually causing the failure of the bond be- 
tween the fibre and the surrounding matrix. The cylin- 
drical crack at the interface propagates from the initial 
matrix crack causing debonding along the fibre [1]. 
Fibre strength is dependent on its length and dia- 
meter, and fibres break at their weakest points, not 
necessarily along the matrix crack plane. The length of 
the fibre that protrudes from the crack plane after 
composite failure is known as the pull-out length. 

The tailoring of composites for toughness is dic- 
tated to a large extent by the properties of the inter- 
face/interphase [2]. The fibre-matrix debond problem 
thus assumes critical importance to the design of 
tough composites. Although the debonding problem 
has received considerable attention, it has yet to be 
completely characterized and understood. Most of the 
work has been concentrated towards the evaluation of 

the bonding strength or the contribution to fracture 
toughness due to pull-out, without an in-depth invest- 
igation into the effects of constituent scale (fibre dia- 
meter and embedded length, bundle size, fibre 
packing, fibre volume fraction) and elastic properties 
of the constituents. Knowledge of this is expected to be 
useful in controlling the fracture mechanisms and 
their sequence, as well as in tailoring composites 
through scale [3]. Previous investigations can be clas- 
sified into two classes. The first comprises a set of 
approaches based on a maximum shear stress cri- 
terion [-4 7], whereas the second uses a fracture mech- 
anics approach [8-13]. Statistical aspects of pull-out 
have been discussed in terms of the variation in fibre 
strength [14, 15]. 

Gray [16] revieweda number of theories and ex- 
periments and stressed that it was important to con- 
sider both the interfacial shear stresses due to elastic 
bonding and the frictional resistance due to slippage. 
The interfacial shear stress is overcome by the de- 
bonding of the fibre-matrix interface. However, fric- 
tional stresses still exist due to resin shrinkage during 
processing, or from the mismatch of expansion coeffi- 
cients during cooling, and from the Poisson's contrac- 
tion of the fibre loaded in tension. This influence has 
largely been neglected except in a few investigations 
[5 7, 9], from which only the formulation of Gao et al. 
[9] includes these effects explicitly. 

In model pull-out experiments, a single fibre is 
embedded in matrix, and a load is applied to the 
system to induce debonding and subsequent pull-out. 
The most common form follows the procedure of 
Takaku and Arridge [7] or a modification thereof, 
wherein the wire end is clamped to a load cell and the 
resin block clamped to the crosshead using minimum 
pressure. The block is then displaced at a constant 
rate. Numerous variations of this exist, including tests 
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which try to duplicate the formation of a matrix crack 
in a composite, normal to the fibre cross section, with 
the use of a Teflon sheet. 

It must be kept in mind that in order to truly tailor 
composites through the control of mechanisms such 
as debonding and pull-out, the creation of an appro- 
priate interphase is essential. The interphase is the 
region responsible for transmitting the interaction be- 
tween the fibre and matrix [17] within which region 
the two constituent phases are combined so as to be 
indistinct. The interface, however, as is used in the 
theories mentioned above, and in the formulation 
following, is only a two dimensional border separating 
the two phases of fibre and matrix. Thus, the theories 
are at best, approximations, as they do not consider 
the effect of the interphase, which is responsible for the 
synergism between the matrix and the reinforcement. 

The objectives of this paper are to investigate the 
effects of constituent scale and relative properties on 
the mechanisms of debonding and pull-out using a 
shear-lag approach. 

2. F o r m u l a t i o n  
In order to analyse the fibre-matrix debond problem 
in the context of fibre debonding and subsequent pull- 
out, consider the composite cylinder shear-lag model, 
as in Fig. 1, wherein a single fibre of radius, a, and 
embedded length, l, is encased within a matrix co-axial 
cylinder of radius, b. Clearly the system models a 
representative volume of a uniaxially reinforced com- 
posite with a fibre volume fraction V s as represented 
by the area function of fibres in a plane vertical to the 
cylinder, such that (a /b )  2 = Vy. It is assumed however 
that the stress field is not affected by the interaction 
between fibres in adjacent cylinders, and that the fibre 
and matrix are perfectly bonded, and behave elast- 
ically. The configuration in Fig. 1 depicts a fibre of 
embedded length, l, with the matrix crack plane nor- 
mal to the fibre. The origin of the system is taken to be 
at the embedded end of the fibre. The fibre is subjected 
to a uniaxial external stress, cr o, and an interfacial 
stress, z. At the outset it is assumed that there is no slip 
between the fibre and the matrix in 0 < z < l, i.e a case 
of perfect bonding. 

The constitutive equations governing stress transfer 
can be derived using the shear-lag approach, similar to 
that used in [5, 18]. The shear stress within the matrix 
region is expressed as 

dwm 
% = G,. drr (I) 

~ J  ! z "~  ~/Matrix crack plane 

b a_ z d  r 
a r 

T 

and, 

1: m 

where Gm is the shear modulus of the matrix and wm is 
the axial displacement of the matrix. The stress dis- 
tribution is one of circular symmetry with both matrix 
displacement and shear stress varying as a function of 
the radial distance, r, from the fibre axis. Equating 
shear stresses within the matrix and at the fibre- 
matrix interface, z 

a t  = rz , ,  (2) 

Integrating the expression for the interfacial 
shear stress obtained by substituting Equation 2 in 
Equation 1 

fw b E,, 
= . 2(1 + %,)dw,, 

(3) 
(wb - w . ) E . ,  

2a(1 + v , , ) l n ( b / a )  

(W b - -  wa)E m 
= (4) 

2r(1 + v , , ) l n ( b / a )  

where E,, and v,, are the Young's modulus and 
Poisson's ratio of the matrix, and w,, and w, are the 
matrix axial displacement at r = b and fibre displace- 
ment at r = a, respectively. It is assumed that the fibre 
displacement does not vary with radial distance. 

So far we have considered only a single fibre sur- 
rounded by matrix. We can generalize this to include 
the effect of fibre packing through the term b/a  [19]. 
Consider hexagonal packing as in Fig. 2. The area of 
the matrix within the triangular region is 3{b2/4, 
whereas the area of fibres included within is rc a=/2. 

rta z 4 2~a  z 
Vf  - 2 3~b 2 3~b 2 

i.e.,b { 2n } 1 / 2 _  = _ _  

a 3 ~ v  I 

Similarly, for a square packing arrangement b/a  
= { r t /Vy}  1/2. Representing the packing factor by P, 

we may write 

a - l V s J  (5) 

If P = 1, we are simply considering the cylinder model 
(Fig. 1) without any correction for fibre packing. 

Z 

i T M  -~ 
b 

(3) 1/2 b/2 

Figure 1 Schematic of the shear-lag model. Figure 2 Hexagonal packing arrangement. 
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The axial stress in a constituent, 05, can be related 
to the axial displacement, w~, where at represents either 
a matrix or fibre element by 

dw~ 
% = E~ dz (6) 

Substitution of Equation 1 in Equation 4, followed by 
integration, and the use of Equation 6 leads to an 
expression for the matrix stress as 

, ln(r/a) o,,, = ~,o: + (o b - a o : ) ~  (7) 

where ~ = E,,/E s, and % = Emdwb/dz is the axial 
stress in a matrix element at the outer edge of the 
cylinder (r = b) which represents the matrix stress at a 
radial distance from the centre of the fibre at which 
displacement in the matrix is equal to the average 
displacement in the matrix. Substitution of Equation 7 
in an expression for equilibrium of stresses in con- 
stituents 

~ + a rcymdr = o o (8) 

leads to the evaluation of the matrix stress at an 
element equidistant from the two fibres as 

{a2C~o + O s [ (  a2 b 2  - -  a 2 ) " ~  _ 

b b 2 - a 2 

21n(b/a) ] 
(9) 

For shear forces to be in equilibrium with the tensile 
forces in the fibre 

do  s 2z 
- ( 1 0 )  

dz a 

Substituting Equation 3, differentiating with respect 
to the axial coordinate, z, and using Equations 6 and 
7, the resulting differential equation may be written in 
the form 

dZ~ I ~176 ] (11) d~z2 = m 2 o :  1 + Oe 

where 

and, 

m = f tl/2 l + ~ a  

(1 + vm) b 2In(b/a) ~ , 

(12) 

= - 1  

Previous solutions for stress transfer have been 
mostly limited to the case of the embedded fibre end 
being debonded from the matrix [6, 20, 21]. However, 
it is PoSsible that at least initially, the embedded end 
would be bonded. Stress transfer at the end was mod- 
elled using a finite difference technique [22, 23] and 
was shown to account for greater than 25% of the 
maximum fibre strain. The importance of the assump- 
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tion of adhesion across the end has been demonstrated 
using finite element approaches [24-27], but since the 
investigations used only small systems, the importance 
of finite size was not thoroughly assessed. Analytical 
solutions for the bonded case were not modelled till 
recently [-5, 18, 28]. In the context of this study, two 
cases are considered as defined below, with appropri- 
ate boundary conditions: 

(1) Embedded fibre end bonded 

o :  = o:0 a t z  = 0 
(13) 

o :  = o o at z = 1 

(2) Embedded fibre end debonded 

O ' f  = 0 at z = 0 

O f  = O 0 at z = l 
(14) 

2.1. Case 1 
o:0 is the stress in the fibre at its embedded end and 
satisfies the continuity condition for strains 

O fo  Omo 

E f  E m 
(15) 

where Omo is the corresponding stress in the matrix 
and E: and E,, are the moduli of the fibre and matrix, 
respectively. The use of Equation 15 and St. Venant's 
principle through the equilibrium condition gives 

~176 (16) o:0 - [1 + Oa] 

Solution of Equation 11, subject to Equation 13 and 
16 yields the axial stress distribution in the fibre to be 

[1 + Og sinh(mz)/sinh(ml)] 
(17) o :  = o 0 [1 + 0~]  

from which the interracial shear stress distribution 
along the fibre length can be derived as 

ooam~a cosh(mz) 
= - ( 1 8 )  

211 + ~ ]  sinh(m/) 

2.2. Case 2 
For the case of the embedded fibre end being free, the 
solution of Equation 11 subject to Equation 14 leads 
to the set of equations 

s of -- 1 + ~  

I ~gs inh(mz)-s inh{m( l -z )}]  
x 1 + s i n h ( - ~  

(19) 

and 

ooam[Oecosh(mz ) + cosh{m(/ -- z)}] 

211 + Oa] sinh(ml) 
( 2 0 )  



2.3. Effects on stress transfer 
The effect of bonding  of the embedded end of  the fibre 
(z = 0) on the normalized axial stress in the fibre, 
c~I/cy o and the normalized interfacial shear stress, 
UC~o, is shown as a function of axial position, z/l ,  Figs 
3 and 4, respectively. The composi te  system used 
represents one with a 4% fibre volume fraction, 

= 0.125, and l /a = 10. Case 1 shows a higher axial 
stress in the fibre due to more effective stress transfer 
when the embedded fibre end is bonded. In concur-  
rence with this, the interfacial shear stress is higher in 
the debonded case. It is interesting to note that the 
min imum value of  the interfacial shear stress in the 
debonded case does not  occur at the fibre end, but 
along its length. This effect is explained in the next 
section. An increase in ~ results in less effective stress 
transfer (Figs 5 and 6, 1/a = 10, V s = 4%). The axial 
stress at the embedded fibre end increases with a 
decrease in e (i.e., an increase in fibre modulus,  or  a 
decrease in matrix modulus). The effects of aspect 
ratio and fibre volume fraction on the normalized 
axial stress are depicted in Figs 7 and 8, respectively. 
For  both, the system used had a ratio of matrix to fibre 
moduli  of 0.125, and results of only case 1 are shown. 
A change in the aspect ratio (or effectively, in the 
embedded length of the fibre) does not  affect the value 
of the axial stress at the embedded end, but does affect 
the rate of stress transfer with the stress distribution 
being more  uniform over a larger fibre length as the 

1.o. 

o 

~ o . s .  
g- 

f J  _ ~ f J  
j f  

f 
/ / ' J  

0 2'0 4'0 6'0 8'0 100 
zl /  I%) 

Figure 3 Normalized axial stress as a function of normalized axial 
position: (--) Case 1; (---)  Case 2. 
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Figure 4 Normalized shear stress as a function of normalized axial 
position; key as Fig. 3. 

1.0. 

o 

0 20 40 60 80 100 
zlt  (Olo) 

Figure 5 Effect of modulus ratio (~ = E,,/EI) on axial stress in the 
fibre: (--) Case 1; (- -) Case 2; (- -) Case 3 and ( - - )  Case 4. 
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b ~ 0 . 2  - 

-0.3- 

- 0.4., 
0 

\ 

c :0.6 
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Figure 6 Effect of modulus ratio (c = Em/EI) on shear stress; key as 
Fig. 4. 

1.0 / 0.8 /,' 

o / /,, y/,,  

0.2, 
0 2'0 4JO 6'0 8~0 100 

zl l  (%) 

Figure 7 Effect of fibre aspect ratio on axial stress in the fibre: (--) 
l/a = 10; ( - - - )  l/a = 20 and (- -) 1/a = 30. 

embedded length increases. As aspect ratio increases, 
the sensitivity of the axial stress to it decreases close to 
the embedded end. Higher fibre volume fractions res- 
ult in an increase in the axial stress along the fibre. 

2 .4 .  Effec t  o f  p a c k i n g  a r r a n g e m e n t  
One of  the foremost challenges in the modelling of  
composite micromechanical  behaviour  is the estab- 
lishment of a representative volume element (RVE). As 
mentioned earlier, the effect of fibre packing in the 
composite can be approximated through a hexagonal 
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Figure 8 Effect of fibre volume fraction on normalized axial stress in 
the fibre as a function of normalized axial position: (--)  Vy = 4% 
a n d ( - - - )  V I = 1 0 %  
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Figure 9 Effect of packing geometry on the development of fibre 
stress, as outlined in Section 2.4. 

-0.05 

-0.I0 
o 

b 

i,-, 
-0.15. 

-0.20. 

-0.25 
0 2'0 40 6'0 80 100 

zlt  (O/o) 

Figure 10 Effect of packing geometry on normalized shear stress as 
a function of normalized axial position along the fibre, as outlined in 
Section 2.4. 

or square packing geometry. Figs 9 and 10 show the 
effect of packing geometry on the axial fibre stress and 
interracial shear Stress as a function of axial position 
(Vy = 5%, l/a = 20, ~ = 0.25). In the figure, the solid 
line depicts the unmodified system, whereas (-) and 
( . . . )  represent the system as modified for square and 
hexagonal packing arrangements, respectively, as de- 
fined by Equation 5. The incorporation of the packing 
arrangement tends to lower the axial stress level, 
reflecting the interaction factor of fibres in the matrix, 
within an RVE. It can be shown that the difference in 

stress levels between the two different packing geo- 
metries is negligible. 

3. In i t i a t ion  of  d e b o n d i n g  
Debonding of the interface initiates when the shear 
stress at a point along the fibre-matrix interface ex- 
ceeds the interfacial shear strength, xs. It is easily seen 
that for the bonded fibre end, the maximum shear 
stress occurs at the surface where the fibre enters the 
matrix. There may be some doubt in the unbonded 
case (e.g., Fig. 4) but it can be shown that the shear 
stress at the surface is always greater than that at the 
embedded end by considering the term 

q~e cosh(mz) + c o s h { m ( / -  z)} 

in Equation 20. The 

T 

T 

at the surface (z = 

shear stress can be expressed as, 

dot cosh(m/) + 1 (21) 

�9 ~ + cosh(m/) (22) 

1), and at the embedded end 
(z = 0), respectively. On comparison it can be seen 
that for an infinitely long fibre, the shear stress would 
always be equal at both ends and hence debonding 
would initiate from both the surface and embedded 
ends simultaneously. This would have an apparent 
effect on fracture toughness, which till now has been 
neglected. However for small embedded lengths, the 
stress from Equation 21 is always greater than that as 
computed from Equation 22, showing that in both 
cases debond initiation begins at the surface. The 
applied stress required to cause debonding, o*,  can 
then be represented as 

~ _ 2~s[1 + 0~]  tanh(ml) (23) 
amO~ 

~ ,  _ 2~s[1 + (I)~] sinh(m/) (24) 
arn[~a cosh(m/) + 1] 

where the subscripts 1 and 2 signify the bonded and 
debonded embedded fibre end cases, respectively. It is 
clear that the stress needed to initiate debonding in a 
fibre bonded at the embedded end is greater than that 
for one with a debonded end as 

or* O~ cosh(ml) + 1 
= > 1 (25) 

o* ~ cosh(ml) 

For an infinitely long fibre o* = ~ ~ in the limit. 
I~*/r,I, (from Equation 23), increases with VI, but 

is largely independent of the embedded length of the 
fibre. Since the initiation of debonding signifies the 
first damage event, it is essential that this phase be 
investigated closely, both analytically and experi- 
mentally. A point of concern is whether the failure of 
the interface, following initial debonding, occurs due 
to the actual propagation of the crack face, or through 
plastic yielding of the matrix. Unfortunately models 
such as the present one are incapable of resolving this 
question. The variation of the ratio of debond initiat- 
ing stresses for the bonded and unbonded fibre end 
cases, as functions of e and V I, is shown in Figs 11 and 
12, for three lengths of fibre embedment. The fibre 
radius was taken as 4 gm in each case. 
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Figure 11 Effect of fibre aspect ratio as a function of modulus ratio 
on6~/cr2:( )l/a=lO;(...)l/a=15and(-- )l/a=20. 
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Figure 13 Equivalent bundle cross-section. 
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Figure 12 Effect of fibre aspect ratio as a function of fibre volume 
fraction on cyl/cr2; key as Fig. 11. 

4. Appl icat ion  to f ibre bundles 
So far we have considered a single filament enclosed 
within a matrix sheath. The formation of fibre 
bundles, or the use of tows, reduces the surface area in 
contact with the matrix and the reinforcing capacity of 
fibres is not completely utilized. For  simplicity, we will 
curtail the discussion to bundles with hexagonal or 
square packing of fibres. The exposed surface area is 
considerably less than the actual sum of surface areas, 
and the equivalent radius, R, can be determined by 
considering an equivalence as depicted in Fig. 13. 

For a bundle containing N fibres, the equivalent 
cross-section is given by 

Nna 2 
R 2 _ (26) 

Vb 

where a is the radius of a single filament and Vb is the 
packing volume fraction. Vb,,ax = 0.907 (erronously 
given as 0.912 in [19]) for hexagonal packing and 
0.785 for square packing. The equivalent radius is then 
given as 

a ( N )  1/2 
R = ~ (27) 

The number of fibres within a bundle using these two 
packings can be computed as 

N = 2172 + 7(7 + 1) ] + (27 + 1) 

= (7 + 1) 2 (28) 

"I'=2 N=9 

N = 1 9  

Figure 14 Packing geometries for hexagonal and square arrays. 

for a hexagonal and square array, respectively. 
y = 1 . . . .  , n and (7 + 1) represents the number of 
filaments needed to form a side of the geometrical 
arrangement (Fig. 14). It should be noted that these 
are for maximum packing, and for arrangements at 
less than optimal, different values of Vb and N may be 
applicable based on the actual arrangement. The sur- 
face area of N fibres is 2roaN, but since the reinforce- 
ment is in the form of a bundle, with exposed area of 
filaments being semicircular, the actual surface area 
can be computed as the product of the circumference 
of an equivalent cylinder of radius R and the ratio of 
the exposed area of a single filament (=  xa, as it is 
semicircular) to its diameter. 

7~a 
Bundle Surface Area = 2 n R -  

2a 

Force equilibrium then gives 

d~B 

dz 

= 7~2R 

/'Cq7 B 

R 

(29) 

(30) 

where o 8 is the stress in the bundle, and rB is the shear 
stress acting at the bundle-matrix interface. A proced- 
ure similar to that in Section 2 for the derivation of the 
constitutive equation can be followed. For  the bonded 
end case, the axial stress in the fibre bundle is given by 

Oon[1 + O~sinh(Kz)/sinh(nl)]  
CYB = (31) 

[1 + qb~] 
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where CroB is the externally applied stress on the 
bundle. We assume as an approximation that there is 
no slip within the bundle and that the axial displace- 
ment in the reinforcement core does not vary with 
radial distance 

2(1 + v,.) b 2 ln(b/R) 2 

(32) 

which on comparison with Equation 12 results in 

~c = m ~ -  (33) 

for the same composite volume fraction, i.e., 

Vf = = 

where b i and bB are the radii of the respective matrix 
sheaths. From Equations 30 and 31 the shear stress 
distribution can be determined as 

R~caos~E cosh (~:z) 
rn = - (34) 

n i l  + ~ a ]  sinh(K/) 

Figs 15 and 16 show the effect of bundle size on the 
normalized axial fibre stress and shear stress, respect- 
ively, as a function of the axial position along the fibre. 
The square packing geometry was chosen with an 
optimal volume fraction within the bundle of 0.785. 
For each bundle size the ratio l/R, where l is the 
embedded length of the bundle and R the equivalent 
bundle radius (Equation 25) was constant (=  20). 
Each filament/fibril within the bundle was of 4 lam 
radius, with the composite fibre volume fraction being 
5% and e = 0.125. The shear stress developed at the 
bundle surface is seen to be the highest for the smallest 
bundle (N = 4) at the matrix crack surface. This how- 
ever is reversed away from the surface, with the largest 
bundle having the highest shear stress after about  40% 
of the fibre length from the surface. The difference in 
the shear s tress distribution along the fibre length 
between the case of a single fibre (Fig. 4) and that of a 
bundle (Fig. 16) is clearly apparent with the shear 
stresses being much lower in the case of bundles, 

1.0- 

0.8 

o 

06 

0.4- 

0.2 
o z'o 4'o 6'o 8'o ~ o o 

z/l  (%1 

Figure 15 Effect of bundle size on the normalized axial stress in the 
bundle as a function of normalized axial position: (~) N = 4; (---)  
N = 16 and (---) N = 36. 
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~ -0.03 

-0.06 t I 
o 2b 4'o 6'0 a'o loo 

z/l (%1 

Figure 16 Effect of bundle size on the normalized shear stress in the 
bundle as a function of normalized axial position; key as Fig. 15. 
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Figure 17 Effect of packing geometry and number of fibres: (--) 
N = 4; (---)  N = 16; (---) N = 36; ( - - - - - )  N = 7; ( . . . . .  ) 
N = 37 and ( . . . .  ) N = 91. 

irrespective of size. A comparison of the effect of 
hexagonal and square packing within bundles for the 
same l/R ratio ( =  20) can be made from Fig. 17. The 
square arrangement results in arrangements of 4, 16 
and 36 filaments, whereas the hexagonal results in 7, 
37 and 91. 

As is apparent, the effectiveness of load transfer to 
the matrix depends on the equivalent radius, R, rather 
than on the number of fibres within a bundle, or the 
total area of fibres, (=  Nrta2), included within. The 
number of fibres within a bundle and the equivalent 
radius assuming optimal packing are provided in 
Table 1 in the order of effectiveness of stress transfer to 
the matrix. Each filament was taken to be 4 gm in 
radius. There is very little difference between the re- 
inforcing capabilities of the hexagonal and square 
packed bundles having a similar number of fibres, in 
spite of the difference in packing fractions, as shown 
for the cases of 36 and 37 fibrils in the square and 
hexagonal arrangements, respectively, Debonding ini- 
tiation will occur at 

n ~ E 1  + ~ ]  tanh(~:l) 
o ~  = - RKq)~ (35) 

where xB, is the shear strength of the bundle-matrix 
interface. It would be of interest, for materials design, 
to relate and compare the debond initiating stress for 
a bundle with that of a single fibre through Equations 
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T A B L E  I Details of packing geometry 

Packing geometry No. of fibrils Equivalent radius (gm) 

Square 4 9.03 
Hexagonal 7 11.08 
Square 16 18.06 
Hexagonal 37 25.48 
Square 36 27,09 
Hexagonal 91 39,96 

TI~ of debond 

i i Matrix 
"~ Debond~d 

~ / i reg lon~ 

crack plane 

23, 24 and 35. 

2N J (36) 
c~* ~ (2/~) 1/2 tanh(ml) 

Knowing the values of shear strength for the bundle 
and filament, the debonding stresses may be computed 
(or vice-versa). 

5. C o n s i d e r a t i o n  o f  f r i c t i o n a l  s t ress  
When the load applied to the fibre is such that the 
maximum interfacial shear stress is equal to the shear 
strength of the fibre-matrix interface, debonding oc- 
curs. This results in energy dissipation due to 
fibre-matrix sliding and a local increase in the elastic 
strain energy of neighbouring fibres. The term de- 
bonding relates to the stage of damage wherein there 
is a relative slip between the fibre and the surrounding 
matrix as a result of the applied load. This however 
does not mean that the system has failed. Some load 
transfer is still possible between the fibre and matrix in 
the debonded zone due to frictional stresses. The 
interfacial shear stresses will however continue to act 
as before along the embedded length of the fibre. The 
system under consideration can now be assumed to be 
divided into two regions as in Fig. 18. This configura- 
tion will be used to study the partially debonded 
fibre-matrix configuration. Following [5, 6] we con- 
sider a shear stress, z, to act outside the debonded 
region and a purely frictional interfacial stress, f, to act 
within the debonded portion. 

(s' is the stress in the fibre at the point where the two 
sections, debonded and perfectly bonded, meet. The 
difference between the stresses (s o and (s' is given by 
[153 

2 f ( 1 -  z)  
ey' = (so + (37) 

a 

At the new position of the crack front, Zma x = Zs and 
from-Equation 18 for the new configuration 

2Zs[1 + q)~] 
(s' - tanh(mz) (38) 

arnO E 

From Equations 37 and 38 

2z~[1 + q)~] 2 f ( l  - z)  
(so - tanh(mz) 

amrb~ a 

(39) 

where z represents the bonded length of the fibre. 
It is intuitively obvious that the ratio of the inter- 

facial shear strength to the interfacial frictional stress, 

- , ] =,I 1; i f 

L id ~ J i TM ,q~ ,q 
= Bonded ' Debonded 

reg ion  region 

~ - ~ 0  

Figure 18 Schematic of shear-lag model representation of partial 
debonding. 

as well as factors such as the remaining embedded 
length, the fibre volume fraction and the ratio of 
moduli will have an influence on whether the initial 
debonding will be catastrophic, or whether additional 
external load is required to continue the process. It is 
important that the stress in the fibre be less than the 
fibre strength, otherwise fibre fracture will result be- 
fore further debonding. 

In order to investigate this further, consider 

2z~[1 + 2f d z ( % )  - sechZ(mz)  + - -  
aO~  a 

For the extremum distance z, 

f qb~ sech2(mz) - 
zs [1 + 0~]  

giving 

Zmax----' cos,,-' + m qb~ (40) 

At this stage, (1 = Zmax), debonding is catastrophic and 
needs no increase in applied stress. If the embedded 
fibre length is greater than z . . . .  debonding will stop 
after the initial amount and further externally applied 
stress is needed to continue the process. The factors of 
dependence are given as 

- q~ 

f Oa 

When W > cosh2(ml), Zma x = l and debonding is in- 
stantaneous. Using this, the stress needed to get com- 
plete debonding followed by pull-out can be expressed 
using Equations 18 and 39, when z -- zs with the above 
condition 

2z~[1 + 0~]  
Cy 0 . . . .  amO~ tanh(ml) 1_< zm,x 

2r~[1 + qb~] 
(so . . . .  arn@~ t anh(mzmJ 

2 f ( l  - Zmax) 
l > Z r . . x  (41) 

a 
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( 2 ~ )  tanh(~l) 
~ 0  ~ - -  a - ~  

~ Z- 

~~ 
y- 
o 1- where 

= l n ( b / a ) a E l  

The parameters ~ from [4] and m from the present 
theory however differ due to the consideration of 
mechanical equilibrium at the embedded end of the 
fibre in the present case. The present theory is hence 
seen to be of a more general nature than that pre- 
scribed in [4], which is a special case of this theory. 

For  a very long fibre, tanh(m/) ~- 1, in Equation 23 
and we can define the maximum stress in a very long 
fibre as 

(Cy/) . . . .  2~=l-1 + ~8 ]  (42) 
arn~8 

and use it to normalize the expressions for pull-out 
stress in Equation 39 as 

~ a x  

(O./) m a x  
- -  = tanh(ml) l _< Zmax 

. 

~= [1 + q)8-1 

x( l  - zm, x) l > Zm,x (43) 

It is to be noted that (c~) max is the stress required 
for the complete debonding of a long fibre, resulting in 
the immediate catastrophic failure of the interracial 
bond with no frictional stress. As can be seen from 
Equation 39, the effect of incorporating the frictional 
shear stress, f, is to increase the axial stress needed for 
pull-out. This again shows the toughening mechanism 
effect caused by the increased work of pull-out. 

Nondimensionalized pull-out stress cy 0max/(O'O)l m a x  lS' 

plotted against the embedded fibre length factor, ml, 
for various values of '~=/fin Fig. 19. For this plot a2/b 2 
= 0.3, (representing a fibre volume fraction of 0.3) 

E r/E,, , = 2.0 and a, the fibre radius was taken as 
10 gin. Stress required for pull-out increases as the 
frictional shear stress increases, as i.e., z = / f ~  1, where- 
as as f - - ,0 ,  i.e., Zs/f--" oo and all embedded fibre 
lengths are less than critical, the maximum pull-out 
load becomes independent of embedded lengths at 
long embedment lengths. At intermediate values, 
l < "~=/f < ~ ,  the pull-out stress versus the embedded 
fibre length factor curves show a point of discontinuity 
at z = Zma~, where the slope of the curve becomes 
constant. This point denotes the onset of action of the 
frictional shear stress in addition to the interfacial 
shear stress. 

6. Discussion and conclus ions 
The effects of the scale of the constituents of a com- 
posite, and their elastic properties on the elastic load 
transfer, development of shear stress, debond initia- 
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z ~ 4 
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The case where I < z . . . .  translates as being equivalent 
to the expression derived by Greszczuk [4], without 
consideration of the interracial frictional stress. The 
stress condition for interfacial failure was given as 

Figure 19 Normalized pull-out stress as a function of embedded 
fibre length factor: ( ) 1; (-  - -)  10 and (- - -)  100. 

tion stress, and pull-out stress have been analysed in 
the previous sections. The end condition of the embed- 
ded fibre was varied so as to investigate the differences 
in load transfer and debond initiation, under the ac- 
tion of tensile loading in the direction of the .fibre axis. 
The interaction effect of neighbouring fibres is built 
into the shear-lag model through the use of a suitable 
RVE describing the packing arrangement of fibres in 
the composite. Both square and hexagonal packings 
are investigated in the analysis. In reality it would be 
necessary to scale both the fibre and the interphase 
dimensions so as to match their respective volume 
fractions in the composite. However, due to the diffi- 
culty in characterizing the interphase, it is simply 
viewed as a dimensionless separation between the 
fibre and matrix. The effect of fibre bundling is also 
investigated. Stresses developed through the use of 
different sizes and arrangements of fibre bundles (or 
bundles of fibrils) are compared, as well as com- 
parisons made of the effects of bundles as against 
those due to the stress being applied to a single fibril. 
It is determined that the shear stresses developed on 
the bundle surface are much lower than those de- 
veloped on the interface between a single fibre and 
matrix. It would appear that the use of bundles is 
advantageous as compared to single fibre reinforce- 
ment. However, the statistics of fibril strength need to 
be kept in mind, in that individual fibrils within a 
bundle could fracture causing a telescopic type of pull- 
out. This could lead to lower energy absorption levels, 
and thereby negate the expected and desired effect of 
increased energy absorption through the use of re- 
inforcement bundles. The success of braiding in the 
fabrication of preforms, suggests that similar tech- 
niques could be applied to the formation of bundles. 
There exists very little work in the area of bundle 
effects although this would seem to appear as a neces- 
sary investigation towards the optimal use of rein- 
forcement and in materials design. 

Both interfacial shear strength and frictional 
stresses are incorporated in the analysis of pull-out. 
The maximum applied stress necessary to cause com- 
plete debonding and subsequent pull-out is shown to 
be dependent on the embedded fibre length, through 
the definition of a critical length for catastrophic de- 
bonding, and on the ratio between the shear strength 
of the interface and the frictional stress present after 



debonding. It was not possible to make a direct com- 
parison between the predictions from. the present 
theory and the results of Takaku and Arridge [7], for 
the pull-out of stainless steel wire embedded in epoxy, 
due to their experimental set-up being considerably 
different from the one modelled herein. In their experi- 
ment, the embedded fibre was extended to the edge of 
the far side of the matrix block, which is incompatible 
with the assumption of continuity of strains used 
herein. However, using their data, values of x were 
computed from test results over the range of embed- 
ded fibre lengths and the overall trend for interfacial 
shear stress was extrapolated to I = 0, to get a value of 
~m,x for the system. The results are in qualitative 
agreement with the experimental conclusion that the 
interfacial shear stress generated between the clean 
stainless steel wire and the epoxy resin is greater than 
that between the mould release agent coated wire and 
the same resin system. The predictions for shear 
strength from the current theory are higher than those 
cited in [7] due to the aforementioned difference in 
set-up. 

Goettler and Faber [29] used the single fibre pull- 
out test to measure the interracial properties of SiC 
fibres in soda-borosilicate glass matrices. They r e -  
ported an interfacial shear stress of 28.65 MPa for 
initial debonding of SCS-6 coated SiC, which was 
arrived at using Greszczuk's analysis. Using the pre- 
sent analysis a value of 29.57 MPa was arrived at. 
Although the difference in values is minor it is to be 
noted that the boundary condition at the embedded 
end of the fibre in the present analysis more closely 
replicates the actual situation. 

The level of stress required to cause intermediate 
(non-catastrophic) debonding of length ( l -  z) (see 
Fig. 18), is given by Equation 39. This relates to the 
case when the applied stress is just sufficient to cause 
debonding of the specified length, but would need a 
further increase in externally applied stress for the 
debonding to continue. It would be of interest to 
compare this with the level of stress needed to cause 
catastrophic debonding for various debonded lengths. 
The nondimensional stress for intermediate debond- 
ing is given by 

oo (,) 
(cy~)~. ~ - tanh(mz) + 

rnr E., 
x EI (1 - z) (44) 

I 1 -)1 l + q b  ~ 

where (~)~a* ,  the normalizing factor, is defined in 
Equation 42. The nondimensional stress for pull-out is 
then 

C$'~ lax 

- tanh(ml) l_< Zm. x 

mt~ E~ 

= tanh(mz .... ) + ~ 1 + \ E I  

X ( l  - -  Zmax) 1 > Zma x (45) 

Properties of the SiC/soda-borosilicate glass system 
from [29] were used as a basis for the following 
theoretical investigation with the embedded length 
being assumed as 2 ram. Curves for the normalized 
stress required to cause intermediate debonding 
against the debonded length as a percentage of the 
embedded length are shown in Fig. 20, for values of 
~=/f= 1, 10 and 100. The initial value of the normal- 
ized stress is that required to just  initiate the first 
debond and it follows that at this point there is no 
frictional stress acting. Hence there is no difference in 
the values of o0/(cy~) ma= at initiation, and the value of 
stress required for a fibre of specified embedded length 
is the same as that for the very long fibre. It can 
however be seen that as the length of the debond, (l 
- z ) ,  increases, stress required for intermediate 

debonding increases with an increase in the value of 
the frictional shear stress, f In order to understand the 
effect of fibre diameter, plots are drawn in Fig. 21 for 
radii of 60, 70 and 80 p.m, with z=/f= 10. It is apparent 
that the debonding stress is slightly higher at smaller 
diameters, due to the increased plastic strain associ- 
ated with debonding of smaller diameter fibres. This is 
in agreement with the experimental conclusions of 
Bowling and Groves [30]. 

A comparison of the stress to cause intermediate 
debonding and that needed to cause catastrophic 
debonding, in systems having the same embedded 
fibre length, may be made from Equations 44 and 

10 

%o 

1 ~ . . . .  , . . . .  "i  . . . .  Y . . . .  
0 10 20 30 40 50 

if-z)~ l (%) 

Figure 20 Normalized stress required for intermediate debonding: 
(--) 1; ( - )  10 and (---) 100. 
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Figure 21 Effect of fibre diameter on stress for intermediate de- 
bonding: (--) 60 p,m; ( ) 70 lain and ( - - )  80 gm. 
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It can be noted that in accordance with the earlier 
discussion, the stress for catastrophic failure increases 
with the value of the frictional shear stress. Thus the 
values of Oo/o~ ax are lower for the higher values of 
frictional shear stress. On comparison it is clear that 
the stress needed for intermediate debonding is much 
less than that for catastrophic debonding when zs = f 
However, as the value of the frictional stress decreases, 
it is seen that there is very little difference between 
these stresses, especially at very low f. This clearly 
emphasizes the increase in toughening due to in- 
creased frictional stresses. 

It is suggested that the interface properties be 
tailored such that the shear strength is of a value 
conducive to interfacial debonding as the preferred 
mode of damage (as against fibre breakage in the case 
of a very strong interface), following matrix cracking, 
and that the interface be such that the frictional shear 
stresses are as high and as close in value to the shear 
strength as possible. This may be achieved through 
coating the fibre so as to create a suitable interface 
which provides micro-roughness on the surface after 
the failure of the elastic bond, It is hoped that the 
present analysis will provide a firm basis for further 
understanding of the energeticS of pull-0ut and the 
toughening mechanisms of debonding, pull-out and 
fibre bridging in  advanced composites. 
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